Rapid Mode Estimation for 3D Brain MRI Tumor Segmentation

نویسندگان

  • Haithem Boussaid
  • Iasonas Kokkinos
  • Nikos Paragios
چکیده

In this work we develop a method for the efficient automated segmentation of brain tumors by developing a rapid initialization method. Brain tumor segmentation is crucial for brain tumor resection planning, and a high-quality initialization may have a significant impact on segmentation quality. The main contribution of our work is an efficient method to initialize the segmentation by casting it as nonparametric density mode estimation, and developing a Branch and Bound-based method to efficiently find the mode (maximum) of the density function. Our technique is exact, has guaranteed convergence to the global optimum, and scales logarithmically in the volume dimensions by virtue of recursively subdividing the search space through Branch-and-Bound. Our method employs the Dual Tree data structure originally developed for nonparametric density estimation, and recently used for object detection with branch-and-bound. In this work we ‘close the loop’, and use the Dual Tree data structure for finding the mode of a density. This estimated mode provides our system with an initial tumor hypothesis which is then refined by graph-cuts to provide a sharper outline of the tumor area. We demonstrate a 12-fold acceleration with respect to a standard mean-shift implementation, allowing us to accelerate tumor detection to a level that would facilitate high-quality brain tumor resection planning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

A Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis

Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...

متن کامل

Efficient Brain Tumor Segmentation using Support Vector Machines

Segmentation of anatomical elements of brain is the fundamental problem in health image analysis. The aim of this work is to create an automated method for mind tumor quantification using MRI picture data units using support vector machines. A brain tumor segmentation method has become developed and validate segmentation on 2D & 3D MRI Data. This technique doesn't require any initialization whi...

متن کامل

Automatic segmentation of glioma tumors from BraTS 2018 challenge dataset using a 2D U-Net network

Background: Glioma is the most common primary brain tumor, and early detection of tumors is important in the treatment planning for the patient. The precise segmentation of the tumor and intratumoral areas on the MRI by a radiologist is the first step in the diagnosis, which, in addition to the consuming time, can also receive different diagnoses from different physicians. The aim of this study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013